DBN

Busbar Differential Protection Terminal
Protection, Control, Metering and Communications
Description

The DBN system is a Distributed Digital Bus Differential Protection System designed for medium to high voltage substations from 30 kV to 500 kV. This wide operation range also provides an economical alternative for distribution substation protection. The distributed architecture of the DBN System offers substantial savings by reducing wiring and installation costs. Furthermore, DBN Systems can be easily adapted to accommodate substation growth or modifications.

DBN Systems consists of one Differential Central Unit (DBC), and a Bay IED (DBP) per line on the bus. The DBN System can be configured to protect any substation scheme (single-bus, double-bus, transfer bus schemes, sectionalized schemes, etc.) up to 4 buses and 28 lines. Additionally, it is also possible to include up to 4 supervisory bus voltage IEDs.

- **Differential Central Unit (DBC)**

 The Differential Central Unit is comprised of:

 - One board containing:
 - Two digital signal processors, running in parallel, dedicated to the differential protection units.
 - One 16 bit microprocessor dedicated to the protection logic.
 - One communications microprocessor dedicated to communicate with the Bay IEDs.
 - Remote communication ports.
 - Boards housing digital inputs, auxiliary outputs and trip and close contacts.
 - Communication boards for connection with the Bay IEDs.

- **Bay IED (DBP)**

 The Bay IEDs are comprised of:

 - One board with a 16-bit microprocessor which samples phase currents with a sampling frequency of 2.88 kHz (2.4 kHz for 50 Hz models), monitors the status inputs from the breaker and switches, and refreshes the status of the auxiliary outputs. This information is transmitted real time to the Differential Central Unit (DBC).
 - Boards housing digital inputs, auxiliary outputs and trip and close contacts.

Operation Principle

Phase current values are captured by the Bay IEDs (DBP) and transmitted via fiber optics to the Differential Central Unit (DBC). The DBC calculates the differential phase currents and the restraint currents (up to 241,920 samples per second) for each bus. These calculations involve the evaluation of up to 12 magnitudes (up to 4 buses x 3 phases).

The set of calculated differential and restraint currents is then processed by the main differential elements, as well as the more sensitive supervision elements in the DBC to determine the operation of the protection. A differential trip occurs when:

\[I_d > I_{d\text{lim}} \text{ where } I_{d\text{lim}} = k \cdot I \text{ restraint} + S (1 - k) \]

In case of fault conditions the trip command is transmitted to each DBP in the system. Each DBP has dedicated overcurrent elements to supervise the trip, blocking trips in those bays where negligible current is circulating.

To achieve maximum reliability, the main differential elements are supported by:

- CT saturation detectors which provide a high level of stability.
- External fault detector that prevents trips for faults outside the protected zone.
- Elements to determine the fault duration.

DBN systems include algorithms to prevent CT saturation effects, and to block the primary differential elements in case the fault is outside of the protected area.

Bus voltage metering elements can be included in the system, providing an additional measure to evaluate the presence of bus faults.
A host of protection elements are included in DBN Systems to complement the critical differential protection function.

- **Supervisory Differential Unit**
 The main differential element is supervised by a more sensitive differential element that monitors the entire bus.

- **Differential Alarm Unit**
 These alarm elements detect differential currents not large enough to trip the relay, but that may be an indication of problems on the bus.

- **Lockout Unit**
 Prevents the closing of breakers after a DBN trip.

- **Supervisory Overcurrent Unit**
 All trip commands are monitored at each Bay Terminal by overcurrent elements. Trips are blocked in those bays with a negligible current flow.

- **Supervisory Undervoltage Unit (optional)**
 A bus voltage IED can be installed to provide additional means of fault location detection. Trips are blocked for voltage values below the setting value.

- **Breaker Failure**
 This unit resides in each bay IED and provides indication of breaker failure for both single-pole and three-pole trips.

- **Oscillography**
 Differential trips are supervised by a more sensitive differential element that monitors the entire bus. The differential trip is complemented by differential alarm elements that constantly supervise the differential current.

- **Other Features**
 - Phase correction via virtual interposing CT software. Allows the use of the existing transformers in retrofit applications.
 - Transparent communication system allows the entire substation to be controlled from any IED.
 - 3 settings groups per unit.
 - Sequence of events log - 100 event capacity with 1 ms resolution.
 - Time synchronization system wide. Permits accurate analysis of sequence of events logs.
 - Hardware, firmware and communications self test.
 - Phase current, differential current, restraint current.
 - Bus voltage metering (optional).

- **DBC Features**
 - 7 digital status contact inputs (expandable to 14).
 - 7 auxiliary outputs (expandable to 14).
 - 13 programmable LED targets.
 - 2 double trip contacts.
 - Optional I/O modules.

- **DBP Features**
 - 8 digital status contact inputs (expandable to 16).
 - 8 auxiliary outputs (expandable to 16).
 - 5 programmable LED targets.
 - 1 double trip contact and 1 double lockout contact.
 - Optional I/O modules.
Human-Machine Interface

DBN system terminals can be accessed in two different modes:

LOCAL MODE

Alphanumeric Keypad & Display (HMI) – DBC Central Unit

DBC Information Key. Access to primary DBN information and functions is available through the INF key located on the DBC unit. Pressing the INF key cycles through various information screens, displaying information and allowing operations such as:

- Phase and bus differential current metering
- Phase and bus restraint current metering
- Bus voltage metering (optional)
- Last trip information reset
- LED Target reset

DBC Keypad. The DBC keypad (16 keys in a 4x4 matrix plus 4 function keys) provides the user the ability to access and edit DBN functions and settings. Sensitive operations are password protected. This feature allows changes to be performed without the use of a computer.

The HMI is menu driven and displayed on the LCD screen (4 line x 20 characters). The following are examples of the menus included in the system

- Configuration:
 - password
 - control enable
 - I/O programming
 - communication
 - date and time

- Settings:
 - central differential unit
 - current IED
 - voltage IED

The data in the Information Menu can be accessed without a password (settings, configuration, metering, records, and operations).

PC Via Serial Port

The different IEDs in the DBN system are equipped with an RS-232 front port. Through this port, a PC can communicate locally via a null modem cable with the user-friendly Avercom software installed.

REMOTE MODE

The DBC is equipped with a rear communications port. This connection permits remote access via modem, or it can be used to include the DBN in an existing system (via RTU, Substation Central Computer or SCADA).

Communications

The communications management software Avercom provides access to the DBN systems using a PC. Communication can be established either in local or remote modes:

- Local mode: connection via DBC or any DBP in the system through the front port
- Remote mode: connection via DBC rear serial port.

The user can reach every IED comprising the DBN system, independent of the point of access. The software is structured with user-friendly menus and dialog boxes to access settings, local operations, data records and programming of inputs and outputs.

Each screen prompts the user to enter data or make a selection in pull-down menus.

The software is password protected allowing various levels of clearance to individual users.

Avercom allows the user to program IED settings off-line. These settings can be easily stored in the software’s database to be uploaded to an IED in the future.

System Architecture

Cabinet mounted DBN components are designed as follows:

- DBC units - enclosed in a standard 4U high, 19” rack case.
- DBP units - enclosed in a standard 2U high, 19” rack case.

Terminal blocks are located at the rear of the enclosures. DBN components can be supplied separately for distributed installation in the substation. They can also be supplied mounted and wired in a substation rack cabinet, ready to be connected to the substation terminal block.
Protection Settings

Central Unit General Settings
- **Unit in service**: YES / NO
- **Bus # enable**: YES / NO
- **Rated Voltage**: 100.00 - 130.00 V

Bay Units General Settings
- **Unit In Service**: YES / NO
- **Bus**: 0 - 4

Transformer Settings
- **Transformer Ratios**
 - **CT Ratio ct#**: 1 - 3,000
 - **VT Ratio vt#**: 1 - 4,000
- **Saturation Currents**
 - **Saturation current ct#**: 100 - 30,000

Central Unit Protection Settings
- **Differential Units**
 - **Unit # Enable**: YES / NO
 - **Sensitivity #**: 0.5 - 10.0 \(I_{ref} \cdot I_n \)
 - **Restrain slope**: 40 - 90 %
- **Differential Alarm Unit**
 - **Unit enable**: YES / NO
 - **Sensitivity**: 0.1 - 1.00 \(I_{ref} \)
 - **Time delay**: 1.0 - 20.0 s
- **Supervision Differential Unit**
 - **Sensitivity**: 0.5 - 10.0 \(I_{ref} \cdot I_n \)
 - **Restrain slope**: 40 - 90 %
 - **Time delay**: 1.0 - 20.0 s

Bay Unit Protection Settings
- **Overcurrent Units (bay units)**
 - **Unit # Enable**: YES / NO
 - **Sensitivity #**: 0.1 - 100.0 A
- **Breaker Failure Unit**
 - **Unit ct# Enable**: YES / NO
 - **Single phase reset ct#**: 0.1 - 12.0 A
 - **3-phase reset ct#**: 0.1 - 12.0 A
 - **1-phase time delay ct#**: 0.00 - 2.00 s
 - **3-phase time delay ct#**: 0.00 - 2.00 s
 - **No load 3-phase time delay ct#**: 0.00 - 2.00 s
- **Undervoltage Supervision Units (bus voltage units)**
 - **Unit Enable vt#**: YES / NO
 - **Sensitivity vt#**: 20 - 220 V

Logic Settings (Central Unit)
- **Lockout Enable**
 - by differential unit: YES / NO
 - via digital input: YES / NO
 - by breaker failure unit: YES / NO
- **Bus Transfer #**
 - 0 (no transfer bus)
 - 1 (1 CT available)
 - 2 (2 CTs available)
- **Transfer Location #**
 - 1 - 28
- **Transfer # Positive Polarity Bus**
 - 0 - 4 (*)
- **Transfer # Negative Polarity Bus**
 - 0 - 4 (*)

(*) 0 = transfer connected to bus indicated by switch status.
1, 2, 3 and 4 = transfer connected to bus #

Logic Settings (Bay Unit)
- **Switch Traveling Time ct#**
 - 1.00 - 120.00 s

= bus number
cT# = 1 to 28 (bay units)
vT# = 29 to 32 (bus voltage units)
(*) Rated voltage available if voltage units are present.

Busbar differential protection DBN
Technical Characteristics

Power Supply Voltage
- 24-48 Vdc (± 20 %)
- 110-125 Vdc (± 20 %)
- 220-250 Vdc (± 20 %)
- Quiescent Power Supply Burden: 7 W at 125 V dc

Current Analog Inputs
- Rated ac Current (In) In = 1A rated
- In = 5A rated
- Thermal Withstand Capability 4 x In Continuously
- 50 x In for 3 s
- 100 x In for 1 s
- Dynamic limit 240 x In
- Current Circuit Burden In = 5A < 0.2 VA
- In = 1A < 0.05 VA

Voltage Analog Inputs
- Rated ac Bus Voltage Vn = 110Vac for 50 Hz
- 120Vac for 60 Hz
- Bus Voltage Thermal Withstand Capability 2 x Vn Continuously
- 3.6 x Vn for 10 s
- Voltage Circuit Burden Vn = 110 Vac < 0.5 VA

Metering Accuracy
- Range 0.1 – 20 In ± 5% (currents)
- Range 0.1 – 1.2 Vn ± 5% (voltages)

Status Contact Inputs
- Rated Voltage Input Range 24 - 48 Vdc (± 20%)
- 24 - 125 Vdc (± 20%)
- 48 - 250 Vdc (± 20%)
- Current Drain < 5 mA

Trip & Close Outputs
- Continuous 8 A
- Make and Carry 30 A
- Connection Capability 2500 W
- Break (Resistive) 150 W (48Vdc)
- 55 W (100 Vdc)
- 1250 VA
- Switching Voltage 250 Vdc

Auxiliary Contact Outputs
- Continuous 3 A
- Make and Carry (30 s) 5 A
- Connection Capability 2000 W
- Break (Resistive) 75 W (48Vdc)
- 40 W (100 Vdc)
- 1000 VA
- Switching Voltage 250 Vdc

Dimensions

Enclosure type “F”
- 8 mm. drilling / measurements in mm.

Enclosure type “N”
- 8 mm. drilling measurements in mm.

Technical Assistance
- Around the Clock
- (877) ZIV-USA 124 hours
- 365 days
- Technical Assistance in U.S.A. and Canada

(877) ZIV-USA
Standards and Type Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation Test</td>
<td>IEC-255-5</td>
<td>Between Circuits and Ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 kV, 50/60 Hz for 1 minute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Between Independent Circuits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 kV, 50/60 Hz for 1 minute</td>
</tr>
<tr>
<td>Impulse Test</td>
<td>IEC-255-5</td>
<td>5 kV; 1,2/50 μs; 0,5 J</td>
</tr>
<tr>
<td>1 MHz Disturbance Test</td>
<td>IEC-255-22-1 Class III</td>
<td>Common Mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5 kV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Differential Mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0 kV</td>
</tr>
<tr>
<td>Fast Transient Disturbance Test</td>
<td>IEC-255-22-4 Class IV</td>
<td>Amplitude Modulated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 V m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pulse Modulated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 V m</td>
</tr>
<tr>
<td>Radiated Electromagnetic Field Disturbance Test</td>
<td>IEC-1000-4-3</td>
<td>Amplitude Modulated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 V</td>
</tr>
<tr>
<td>Conducted Electromagnetic Field Disturbance Test</td>
<td>EN 50141</td>
<td>Electrostatic Discharge Test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IEC-255-22-2 Class IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 kV ±10%</td>
</tr>
<tr>
<td>Temperature</td>
<td>IEC-255-5</td>
<td></td>
</tr>
<tr>
<td>Operating Range</td>
<td></td>
<td>-10°C to +55°C</td>
</tr>
<tr>
<td>Storage Range</td>
<td></td>
<td>-25°C to +70°C</td>
</tr>
<tr>
<td>Humidity</td>
<td></td>
<td>95% (non condensing)</td>
</tr>
<tr>
<td>Power Supply Ripple</td>
<td>IEC-255-11</td>
<td>< 20%</td>
</tr>
<tr>
<td>Vibration Test (sinusoidal)</td>
<td>IEC-255-21-1 Class I</td>
<td></td>
</tr>
<tr>
<td>Shock and Bump Test</td>
<td>IEC 255-21-2 Class I</td>
<td></td>
</tr>
</tbody>
</table>

DBN terminals comply with the EEC 89/336 standard of electromagnetic compatibility.
Generic Block Diagram

Central Unit (DBC)

Bay IED (DBP)

Headquarters: Parque Tecnológico, 210
48170-Zamudio, Vizcaya. Aptdo. 757-48080 Bilbao - Spain
Tel.: +34 - 944 522 003 - Fax: +34 - 944 522 140

Madrid: Avenida Via Dos Castillas, 23.
Chalet 16 - 28224 Pozuelo de Alarcón - Madrid - Spain.
Tel.: +34 - 913 527 056 - Fax: +34 - 913 526 304

ZIV U.S.A. Inc. 2340 Des Plaines River Road, suite 210. Des Plaines
Illinois 60018 - U.S.A.Tel. 1-847-299-6580 Fax. 1-847-299-6581