Structure

^¹IBERDROLA

Partners

upgrid.eu

Project Information

Торіс	LCE-07-2014: Distribution grid and retail market
Call	H2020-LCE-2014-3
Funding scheme	IA – Innovation Action
Duration	01/01/2015 – 31/12/2017 (36 months)
Budget	15,7 M€ (11,9 M€ EU grant)
Project Coordinator	Iberdrola Distribución Eléctrica
Partners	19 from 7 European countries (ES, PT, SE, PL, UK, FR, NO)
Demonstration sites	4 Demonstration sites (ES, PT, SE, PL)

Real proven solutions to enable active demand and distributed generation flexible integration, through a fully controllable LOW Voltage and medium voltage distribution grid

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 646.531

Project Motivation

Expected Outcomes and Impacts

- Functional specification of LV dispatching
- Achieve sound LV network representation
- Deployment of mobility tools to support LV field crews
- Integration and processing of meter events in the Outage Management System (OMS)
- Deployment of equipment in secondary substation (SS) and MV feeders to achieve a supplier independent solution for further deployment
- LV grid remote control operation over PRIME infrastructure
- Multiservice PRIME subnetwork
- Combined use of AMI and Home Energy Management **Systems** for Active Demand Management
- Improvement of consumer capacity building web-based
- New steps towards an open market for services (providing information to other agents through IT): **DSO** as an "enabler"
- Assessment of optimal business models for market participants
- **KPI framework** definition to evaluate impacts

Location: Bilbao. North of Spain Technical objectives

✓ Have a sound LV network representation

- operation
- ✓ Improvement and extension of the PLC PRIME-based communications: remote control operation of LV grid
- ✓ Extend present smart metering deployment for LV grid visibility, controllability and operation
- ✓ **Improve** the different factors that impact on **global** quality of the LV grid: consumer oriented

Demo developments

LV Network Management System (LV NMS)

- LV Outage Management capabilities

- inconsistencies detection and solving

- ✓ Develop a **dispatch tool** to support **LV** network

Desktop solution

Import LV network topology & info from GIS: CIM based

Integrated with current systems

Meter events analysis and processing

- Motivation of field actions for voltage improvements Refinement of supervision meters inventory:
- Detailed voltage measuring: Virtual register tool

PRIME based functionalities

support over PRIME New PRIME

Gateway device (Base and Service

Optimize IP

Empowering consumers by providing information, perception and control through a web tool solution

Consumer empowering

Collaboration in transversal components

Load & generation forecasting, Demand side mgmt., Support tool for maintenance crews and MV estimators

Demo partners

Demo developed leveraging on **bidelek** project

Kev figures

1.075 secondary substations (SSs)

> 3.500 LV feeders supervised > 190.000 consumers

Urban area

13.450 consumers

Portuguese

Demonstrator

Location: Lisbon (Parque das Nacões)

Expected results and impacts

✓ Increase **observability** + **controllability** of the LV grid

✓ Develop the existing Smart Grid infrastructure

✓ Enhance DSO market facilitator role

✓ Increase the **flexibility** of the grid

✓ Improve DSO data manager role

✓ Facilitate an **open market** for services

LV state estimation, voltage control, flexible load DR Calculation of **non-technical losses** using field data

Technical objectives

- Consumption and generation forecasting
- **Events and alarms** integration and processing Field teams support using mobility solutions
- Calculation and system integration of grid indicators
- Single GIS based platform to assist LV grid operation
- Create a market hub connecting market players
- Enable flexibility services to/from market players

Social objectives

- ✓ Combined use of AMI and HEMS: **Demand Response**
- ✓ Customer empowerment + increase awareness
- ✓ Promote **customer engagement** in electricity market
- ✓ Societal research on the **socio-economic impact** of Smart Grid

Demo partners

of DER and

2 primary substations / 140 SSs

16 EV charging stations / 7.728 public lighting post Urban area

Market Facilitator

Kev figures

Location: Åmål. Sweden

Demonstrator

Swedish

Technical objectives

- ✓ MV/LV monitoring solutions testing in real Vattenfall system applications
- ✓ Interoperability of equipment with system environment
- ✓ Improved Quality of Supply

51 SSs (16 with intelligent equipment)

530 consumers

Rural area

2 MV feeders (10 kV)

✓ "Pre-study" for future Smart Grid implementation within Vattenfall Distribution

Expected results and impacts

- ✓ UPGRID results as an input for the LV network monitoring business case and decision support
- ✓ The ultimate goal of the Swedish Demo is to prepare for the **full-scale deployment** of Smart Grid solutions in the Vattenfall networks and IT environment

Kev figures

Demo partners

Process

Systems and components involved

Overview of demo components

Scope system

integration

DER Customer

Polish

Demonstrator

Location: Gdynia, North of Poland LV Network

Technical objectives

- ✓ SCADA/DMS LV, GIS, AMI systems integration using ✓ Distribution of UPGRID results among interest the CIM standard
- ✓ Increase MV and LV network observability and LV network management improvement

✓ **Distributed generation management** in LV network

✓ Improve **reliability** of LV power supplies

55 SSs

14.700 consumers

Overhead & underground LV network

- Social objectives
- ✓ Increase consumer satisfaction regarding quality
 - supply and DSO technical support

parties and informing them about Smart Gr

Smart Grid New control and monitoring device

Key figures **Demo partners**

38 km MV cables and 102 km LV cables

