

Over/under Voltage Protection Protection, Metering and Communications

Description

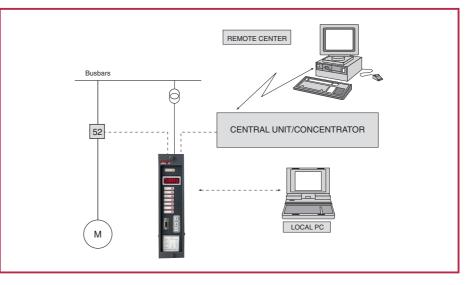
TPI relay family, using digital tecnology of the last generation, incorporates over and under voltage protection functions as well as metering and communications. The following versions are available:

- Single-phase over/under voltage (127/159) (selectable)
- Three-phase over/under voltage (3x27/3x59) (selectable)
- Single-phase residual voltage protection (1x59N)*
 - * 3rd harmonic filter included

Each relay can be used either individually or integrated in a system with other types of protections (CPI, FGI, FGI or others). Local and remote communications are available in each case.

When the relays are part of an integrated protection and control system, the connection to the remote center is made through the communications subsystem of each terminal. This subsystem is responsible for the external coupling functions.

Application


Voltage is one of the main electrical quantities for defining a Power System. The power equipment installed in a system, has been designed to operate at a given voltage level, however, small over voltages in the network have little effect on it.

Generators, transformers, capacitor banks, etc. are electrical machines very sensitive to over voltages. On the other hand, there are other components such as motors, regulators, etc. which should not operate under the rated voltage level.

Overvoltage and undervoltage protections are usually inverse or

definite time type, with tripping times between 0.2 and 20 s. Instantaneous trip is required in those cases where the magnitude of the overvoltages is considerable.

TPI protective relays, are applicable in those installations requiring a reliable detection of voltage fluctuations.

Functions

In addition to the protection functions above described, they incorporate, as standard, the following ones:

- Optical alarm indication: 7 LED's (6 configurable)
- Tripping outputs (1 switched contact plus another configurable one a/b)
- 2 configurable digital inputs
- Programmable logic of auxiliary outputs (3 switched contacts)
- Functions selection:
- 2 overvoltage levels
- 2 undervoltage levels
- 1 over and 1 undervoltage levels
- Local and remote* communications interface
- Measuring of voltage
- Event recording and Fault Reporting

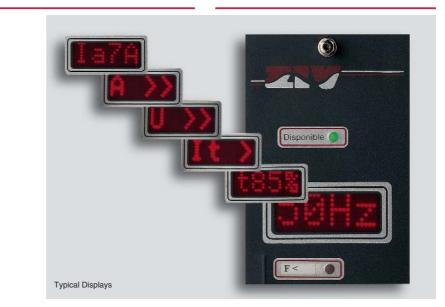
* Optional

Man-machine interface

Man-machine communication can be done in two different modes: • LOCALLY, through:

1. Push button. When the equipment has its cover on, access to it can be made through one push button. Pressing it, the information is displayed in a circular motion, showing the following features:

- · Last trip data
- Measurements (referred to the primary side)
- Last trip information and LED's reset


2. Key board. Removing the cover, user has access to the entire keyboard, 3 keys (Ψ , \uparrow and **Enter**). Through the Ψ , \uparrow keys, access is allowed to the corresponding submenus, for example:

Configuration	Settings	Information
Communications	General	Measurements
Inputs and outputs Configuration	Protection	Last trip data

3. Display. LCD type with one row of 4 characters.

4. PC. Connected to a serial communications port, placed in the front of the equipment.

• **REMOTELY (optional)**, through a serial communications port in the rear of the equipment. RS232 or Optical Fiber (glass or plastic) are the two available options.

Screen from the Exercom communications program for PC

Communications

The communications program **Exercom** enables the dialogue with **TPI** relays, and other equipment, either **locally** (via front port) or **remotely** (via serial port). This program covers every user need regarding programming, setting, operations, event recording, reporting, measuring data, etc.. The program is protected against unauthorized users by means of **passwords**.

which runs in WindowsTM, is user friendly and requires buttons or keys to open the various submenus.

Each submenu contains one or several dialog windows which, in each case, ask user to either introduce data or select certain predetermined values.

The communication through the local port implies necessarily an automatic switch to **local mode**. Thus, remote access is inhibited. Configuration of the remote serial port and the programmable I/O, can only be carried out in **local mode**.

* WINDOWS TM is a registered trademark of Microsoft Corporation in the United States of America and other countries

Protection setting ranges

General setting ranges	
1 -4000	
YES/NO	
YES/NO	
YES/NO	

Single-phase over/under voltage unit $(1 \times 27) (1 \times 59)$

Single-phase over/under voltage unit (1	∞27) (1 ∞59)	Single-phse over / under voltage unit (3	∞27) / (3 ∞59)
Pick-up unit. U< / U>	0 - (0.1 <i>—</i> 1.5) U _n	Pick-up unit. U< / U>	(0.1 –1.5) U _n
Instantaneous U>>	0 - (1 <i>—</i> 2.5) U _n	Instantaneous U>>	(1 –2.5) U _n
Definite time t< / t>	(0 –100) s	Definite time t	(0 <i>—</i> 100) s
Unit curve U<	V/t	Unit curve U<	V/t
Unit curve U>	V/t	Unit curve U<	V/t

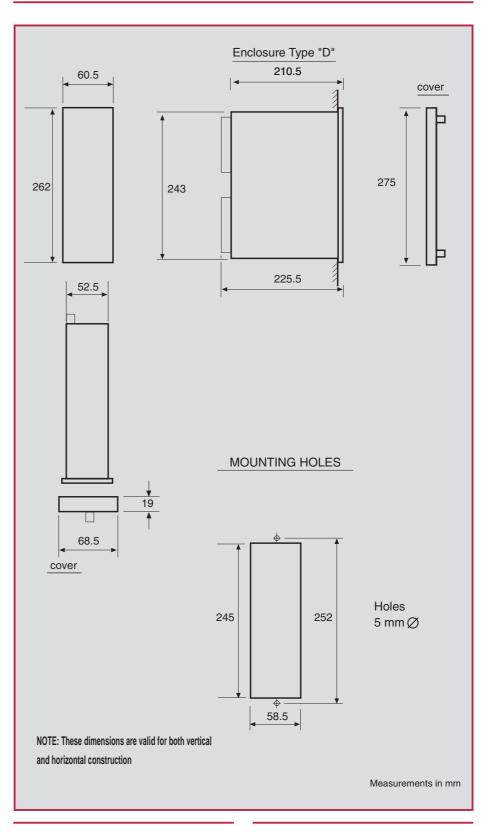
Residual voltage unit (1 x 59N)

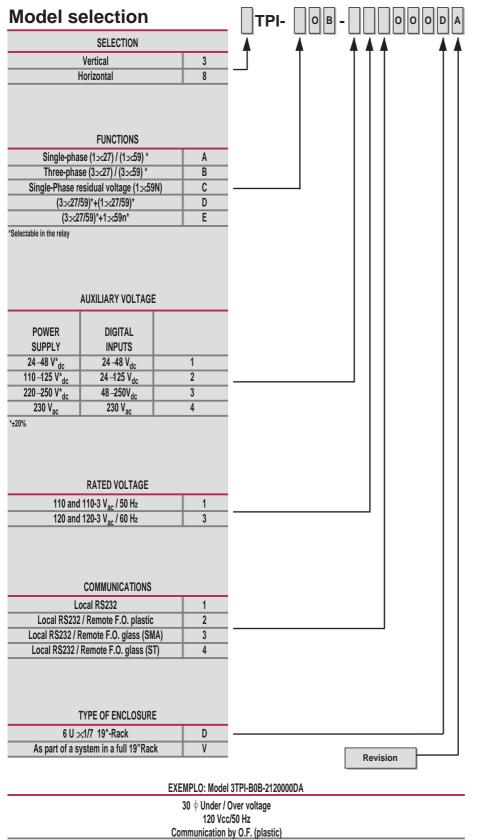
Residual voltage ulit (1 × 3914)	
Pick-up unit U>	(0.2 <i>—</i> 0.5) U _n
Definite time t>	(0 <i>—</i> 100) s.

Technical characteristics Dimensions

Auxiliary voltage (Uaux)*	
24-48 V _{dc} (± 20 %)	
110-125 V _{dc} (± 20 %)	
220-250 V _{dc} (± 20 %)	
230 V _{ac} (± 20 %)	
Power drain: 7 W	

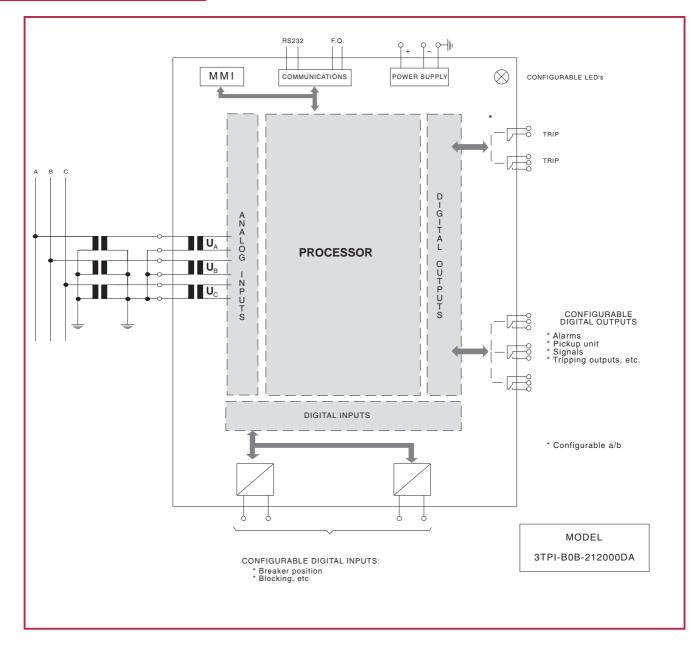
Voltage inputs	
Rated values (U _n)	110 V, 50 Hz
Rated values (U _n)	120 V, 60 Hz
Thermal capability (continuous)	2xU _n (Phases)
Thermal capability (for 10 s)	3.6xU _n (zero sequence)


Digi	tal inputs
Input v	oltage range
24-250 ±20%	V _{dc} *
110 ±20%	V _{dc/ac}
230	V _{ac}
Current Drain	< 10 mA
Banga apporting to model	


Range according to model

Tripping	Tripping outputs	
Switching capability	2500 W	
Breaking capability	250 W/1250 VA*	
Switching voltage	250 Vcc	
I continuous	5 A	
I short duration	10 A during 0.5 s	

Auxiliary	outputs
Switching capability	2000 W
Breaking capability	200 W/1000 VA*
Switching voltage	250 Vcc
I continuous	3 A
I short duration	8 A during 4 s



Standards and type tests

This equipment satisfies and exceeds the requirements of IEC-255 in its maximum class for all the values indicated below:

Insulation test	(IEC-255-5)
Between circuits and earth	2 kV, 50 Hz 1 min
Betveen independent circuits	2 kV, 50 Hz 1 min
Selectable according to models	
Impulse	test
(CEI 25	5-5)
5 kV , 1.2/50	μs, 0.5 J
1 MHz distu	rbances
(IEC 255-22-4	Class III)
Common mode 2.5 kV	
Differential mode	1 kV
Fast trans	sients
(IEC 255-22-1	Class IV)
4 kV ± 1	10%
Electrostatic	discharges
(IEC-255-22-2	-
8 kV ± 1	,
Temperature	(150-255-6)
Operating range	-10°C to +55°C
Storage range	-10 C to +33 C
Humidity	95% (non-condensing)
numuny	so // (non condensing)
Alternating comp	onent (ripple)
(IEC 255	j-11)
Ripple should always	be less than 20%
Radio frequenc	y emissivity
IEC-41B	
Degree of protection prov	•
IP 51 for the metallic e	enclosure. IEC-529
Susceptibility to radiated	electromagnetic fields
IEC-255-22-3	Class III
10 V/	

